%I #18 Oct 18 2023 10:06:21
%S 1,3,10,30,72,247,937,2844,9261,30742
%N a(n) = A365742(10^n).
%H R. Baker and G. Harman, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8342.pdf">Shifted primes without large prime factors</a>, Acta Arithmetica 83 (1998), pp. 331-361.
%H Paul Pollack, Carl Pomerance, and Enrique Treviño, <a href="https://math.dartmouth.edu/~carlp/MonotonePhi.pdf">Sets of monotonicity for Euler's totient function</a>, preprint. See M0(n).
%H Paul Pollack, Carl Pomerance, and Enrique Treviño, <a href="https://doi.org/10.1007/s11139-012-9386-6">Sets of monotonicity for Euler's totient function</a>, Ramanujan J. 30 (2013), no. 3, 379-398.
%H Terence Tao, <a href="https://arxiv.org/abs/2309.02325">Monotone non-decreasing sequences of the Euler totient function</a>, arXiv:2309.02325 [math.NT], 2023.
%F Baker and Harman showed that a(n) >= 10^(0.7038n) for all large enough n. - _Chai Wah Wu_, Oct 17 2023
%o (Python)
%o from collections import Counter
%o from sympy import totient
%o def A365748(n): return max(Counter(totient(i) for i in range(1,10**n+1)).values())
%Y Cf. A000010, A000720.
%Y Cf. A365398, A365399, A365400, A365474, A365737, A365738, A365740, A365741, A365742, A061070.
%K nonn,hard,more
%O 0,2
%A _Chai Wah Wu_, Sep 17 2023