login
A365701
G.f. satisfies A(x) = 1 + x^5*A(x)^4 / (1 - x*A(x)).
5
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 5, 10, 16, 23, 31, 62, 128, 243, 423, 686, 1192, 2223, 4223, 7843, 13991, 24856, 45108, 83673, 156223, 288535, 527971, 966803, 1784663, 3319988, 6183424, 11483613, 21284475, 39499855, 73558147, 137347615, 256616567, 479231240
OFFSET
0,11
FORMULA
a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k-1,n-5*k) * binomial(n-k+1,k) / (n-k+1).
PROG
(PARI) a(n) = sum(k=0, n\5, binomial(n-4*k-1, n-5*k)*binomial(n-k+1, k)/(n-k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 16 2023
STATUS
approved