login
A365699
G.f. satisfies A(x) = 1 + x^5*A(x)^2 / (1 - x*A(x)).
5
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 3, 6, 10, 15, 21, 33, 57, 101, 175, 291, 477, 791, 1341, 2310, 3986, 6839, 11681, 19966, 34300, 59245, 102647, 177963, 308483, 534973, 929147, 1616981, 2818967, 4920299, 8594665, 15023561, 26283971, 46030771, 80695333, 141593087
OFFSET
0,11
FORMULA
a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k-1,n-5*k) * binomial(n-3*k+1,k) / (n-3*k+1).
PROG
(PARI) a(n) = sum(k=0, n\5, binomial(n-4*k-1, n-5*k)*binomial(n-3*k+1, k)/(n-3*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 16 2023
STATUS
approved