login
A365668
G.f. A(x) satisfies: A(x) = x * (1 + A(x))^5 / (1 - 2 * A(x)).
3
0, 1, 7, 73, 905, 12354, 179305, 2715192, 42414021, 678476755, 11058588574, 182999237590, 3066447596459, 51926183715280, 887204891847960, 15276037569668880, 264797324173666845, 4617195655522976361, 80930337327794271445, 1425171253004955494215, 25202145191953299213490
OFFSET
0,3
COMMENTS
Reversion of g.f. for 4-dimensional figurate numbers A001296 (with signs).
LINKS
Eric Weisstein's World of Mathematics, Series Reversion
FORMULA
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(5*n,n-k-1) * 2^k for n > 0.
a(n) ~ sqrt(32 - 19*sqrt(5/2)) * 3^(4*n - 3/2) * 5^(3*n) / (sqrt(Pi) * n^(3/2) * 2^(2*n + 3/2) * (25 + 34*sqrt(10))^n). - Vaclav Kotesovec, Sep 27 2023
MATHEMATICA
nmax = 20; A[_] = 0; Do[A[x_] = x (1 + A[x])^5/(1 - 2 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CoefficientList[InverseSeries[Series[x (1 - 2 x)/(1 + x)^5, {x, 0, 20}], x], x]
Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[5 n, n - k - 1] 2^k, {k, 0, n - 1}], {n, 1, 20}]]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 26 2023
STATUS
approved