login
A365666
Expansion of Sum_{0<i<j<k<l} q^(2*(i+j+k+l)-4)/( (1-q^(2*i-1))*(1-q^(2*j-1))*(1-q^(2*k-1))*(1-q^(2*l-1)) )^2.
3
1, 2, 4, 8, 14, 24, 40, 64, 100, 144, 212, 304, 424, 588, 800, 1072, 1422, 1864, 2408, 3080, 3950, 4972, 6224, 7760, 9564, 11742, 14344, 17384, 20968, 25204, 30112, 35840, 42548, 50078, 58888, 69048, 80474, 93628, 108608, 125408, 144536, 166224, 190348
OFFSET
16,2
LINKS
FORMULA
G.f.: (1/4) * ( Sum_{k>=4} (-1)^k * k * binomial(k+3,7) * q^(k^2) ) / ( 1 + 2 * Sum_{k>=1} (-q)^(k^2) ).
CROSSREFS
A diagonal of A060047.
Cf. A015128.
Sequence in context: A091778 A053802 A091779 * A090399 A069251 A261988
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 15 2023
STATUS
approved