%I #17 Sep 15 2023 10:29:04
%S 1,3,9,22,51,108,208,390,693,1193,1977,3195,4995,7722,11583,17164,
%T 24882,35685,50205,70083,96300,131101,176358,235377,310651,407352,
%U 529074,682750,874038,1112085,1405521,1766259,2206413,2741431,3389052,4168089,5103450,6218469
%N Expansion of Sum_{0<i<j<k<l<m} q^(i+j+k+l+m)/( (1-q^i)*(1-q^j)*(1-q^k)*(1-q^l)*(1-q^m) )^2.
%H G. E. Andrews and S. C. F. Rose, <a href="http://arxiv.org/abs/1010.5769">MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms</a>, arXiv:1010.5769 [math.NT], 2010.
%F G.f.: -(1/11) * ( Sum_{k>=5} (-1)^k * (2*k+1) * binomial(k+5,10) * q^(k*(k+1)/2) ) / ( Sum_{k>=0} (-1)^k * (2*k+1) * q^(k*(k+1)/2) ).
%Y A diagonal of A060043.
%Y Cf. A000203, A002127, A002128, A365664.
%Y Cf. A010816, A365631, A365667.
%K nonn
%O 15,2
%A _Seiichi Manyama_, Sep 15 2023