OFFSET
0,7
COMMENTS
EXAMPLE
Triangle begins:
1
1 1
1 0 1
2 1 1 2
2 1 0 1 2
3 1 1 1 1 3
4 2 2 1 2 2 4
5 2 2 2 2 2 2 5
6 3 2 3 1 3 2 3 6
8 3 3 4 3 3 4 3 3 8
Row n = 6 counts the following strict partitions:
(6) (5,1) (4,2) (3,2,1) (4,2) (5,1) (6)
(5,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (5,1)
(4,2) (4,2)
(3,2,1) (3,2,1)
Row n = 10 counts the following strict partitions:
A 91 82 73 64 532 64 73 82 91 A
64 541 532 532 541 541 541 532 532 541 64
73 631 721 631 631 4321 631 631 721 631 73
82 721 4321 721 4321 4321 721 4321 721 82
91 4321 4321 4321 4321 91
532 532
541 541
631 631
721 721
4321 4321
MATHEMATICA
Table[Length[Select[Select[IntegerPartitions[n], UnsameQ@@#&], MemberQ[Total/@Subsets[#], k]&]], {n, 0, 10}, {k, 0, n}]
CROSSREFS
Columns k = 0 and k = n are A000009.
Central column n = 2k is A237258.
For subsets instead of partitions we have A365381.
The non-strict case is A365543.
The complement is A365663.
A000124 counts distinct possible sums of subsets of {1..n}.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Sep 16 2023
STATUS
approved