login
A365450
Triangle read by rows: row n gives y transposed, where y is the solution to the matrix equation M*y=b, where the matrix M and vector b are defined by M(i,j) = ((3^(i+1) + 1)^(j-1) + 2)/3 and b(i) = ((3^(i+1)+1)^n + 2)/3 for 1 <= i,j <= n.
3
4, -118, 38, 9838, -3396, 120, -2413594, 851584, -32676, 364, 1765112266, -627258560, 24705064, -298396, 1094, -3864390160942, 1376531364480, -54681938592, 677595512, -2692068, 3282, 25363211967758062, -9041746935535360, 360199412405184, -4501063688336, 18342945728, -24228552, 9844
OFFSET
1,1
COMMENTS
This sequence is similar to A292625, see the MathOverflow link.
The matrix M is given by A374258. - Ahmad J. Masad, Jul 29 2024
EXAMPLE
Triangle begins:
4;
-118, 38;
9838, -3396, 120;
-2413594, 851584, -32676, 364;
...
PROG
(PARI) M(n) = matrix(n, n, i, j, ((3^(i+1) + 1)^(j-1) + 2)/3);
b(n) = vector(n, i, ((3^(i+1)+1)^n + 2)/3);
row(n) = matsolve(M(n), b(n)~)~; \\ Michel Marcus, Sep 03 2023
CROSSREFS
Sequence in context: A030255 A146508 A374676 * A096464 A285053 A264420
KEYWORD
sign,tabl
AUTHOR
Ahmad J. Masad, Sep 03 2023
EXTENSIONS
More terms from Michel Marcus, Sep 03 2023
STATUS
approved