login
A365384
Lexicographically earliest infinite sequence such that a(i) = a(j) => A351251(i) = A351251(j) for all i, j >= 0, where A351251(n) is the denominator of n / A276086(n).
2
1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 4, 9, 10, 11, 12, 7, 13, 14, 15, 16, 12, 16, 17, 18, 19, 11, 20, 21, 22, 23, 24, 25, 26, 25, 27, 5, 28, 29, 30, 29, 27, 31, 10, 32, 33, 29, 34, 35, 36, 16, 30, 37, 38, 39, 40, 37, 20, 41, 42, 43, 44, 45, 46, 25, 47, 48, 49, 50, 51, 50, 27, 52, 53, 54, 55, 45, 56, 35, 57, 58, 55, 58, 59, 60, 40, 58, 61, 62, 63, 64, 65, 45
OFFSET
0,2
COMMENTS
Restricted growth sequence transform of A351251, or equally, of A351253.
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A351251(n) = denominator(n/A276086(n));
v365384 = rgs_transform(vector(1+up_to, n, A351251(n-1)));
A365384(n) = v365384[1+n];
CROSSREFS
Cf. also A365393, A365431.
Sequence in context: A361255 A304745 A353853 * A350840 A176789 A308158
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 07 2023
STATUS
approved