login
A365345
The number of divisors of the smallest square divisible by n.
2
1, 3, 3, 3, 3, 9, 3, 5, 3, 9, 3, 9, 3, 9, 9, 5, 3, 9, 3, 9, 9, 9, 3, 15, 3, 9, 5, 9, 3, 27, 3, 7, 9, 9, 9, 9, 3, 9, 9, 15, 3, 27, 3, 9, 9, 9, 3, 15, 3, 9, 9, 9, 3, 15, 9, 15, 9, 9, 3, 27, 3, 9, 9, 7, 9, 27, 3, 9, 9, 27, 3, 15, 3, 9, 9, 9, 9, 27, 3, 15, 5, 9, 3
OFFSET
1,2
COMMENTS
The sum of these divisors is A365346(n).
The number of divisors of the square root of the smallest square divisible by n is A322483(n).
FORMULA
a(n) = A000005(A053143(n)).
Multiplicative with a(p^e) = e + 1 + (e mod 2).
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 2/p^s - 1/p^(2*s)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Dirichlet g.f.: zeta(s)^3 * zeta(2*s) * Product_{p prime} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
Let f(s) = Product_{primes p} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * Pi^2 * n / 6 * (log(n)^2/2 + (3*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)) * log(n) + 1 - 3*gamma + 3*gamma^2 - 3*sg1 + (3*gamma - 1)*12*zeta'(2)/Pi^2 + 12*zeta''(2)/Pi^2 + (12*zeta'(2)/Pi^2 + 3*gamma - 1)*f'(1)/f(1) + f''(1)/(2*f(1))), where
f(1) = Product_{primes p} (1 - 4/p^2 + 4/p^3 - 1/p^4) = 0.2177787166195363783230075141194468131307977550013559376482764035236264911...,
f'(1) = f(1) * Sum_{primes p} 4*(2*p - 1) * log(p) / (1 - 3*p + p^2 + p^3) = 0.7343690473711153863995729489689746152413988981744946512300478410459132782...
f''(1) = f'(1)^2/f(1) + f(1) * Sum_{primes p} 4*p*(-1 + 2*p + p^2 - 4*p^3) * log(p)^2 / (1 - 3*p + p^2 + p^3)^2 = 0.1829055032494906699795154632343894745397324334876662084674149254022564139...,
gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). (End)
MATHEMATICA
f[p_, e_] := e + 1 + Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x -> x + 1 + x%2, factor(n)[, 2]));
(PARI) a(n) = numdiv(n*core(n)); \\ Michel Marcus, Sep 02 2023
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Sep 02 2023
STATUS
approved