login
A365277
Numbers of the form prime(i)*prime(j)*prime(i+j).
2
12, 30, 63, 70, 154, 165, 273, 286, 325, 442, 561, 595, 646, 741, 874, 931, 1045, 1173, 1334, 1495, 1653, 1771, 1798, 2139, 2294, 2465, 2639, 2945, 3034, 3219, 3509, 3526, 3689, 3813, 4042, 4255, 4433, 4773, 4921, 4982, 5781, 5945, 6253, 6254, 6601, 6665, 6837, 6919, 7198, 8174, 8319, 8569, 8695
OFFSET
1,1
COMMENTS
Members of A364462 that have no proper divisor in A364462.
LINKS
EXAMPLE
a(3) = 63 is a term because 63 = 3^2 * 7 = prime(2) * prime(2) * prime(2+2).
MAPLE
N:= 10^4: # for terms <= N
S:= NULL:
for i from 1 do
p:= ithprime(i);
if 2*p^2 > N then break fi;
for j from 1 to i do
v:= p * ithprime(j)*ithprime(i+j);
if v > N then break fi;
S:= S, v
od
od:
sort([S]);
CROSSREFS
Intersection of A014612 and A364462.
Sequence in context: A323441 A064483 A375718 * A322181 A334791 A110019
KEYWORD
nonn
AUTHOR
Robert Israel, Aug 30 2023
STATUS
approved