login
A365115
G.f. satisfies A(x) = 1 + x / (1 - x*A(x))^5.
2
1, 1, 5, 20, 90, 440, 2236, 11720, 62960, 344690, 1916170, 10787762, 61380770, 352410760, 2039099640, 11878519460, 69608606348, 410056995475, 2426936098575, 14424334077975, 86055337016695, 515170271387970, 3093724519080210, 18631778892165080
OFFSET
0,3
FORMULA
If g.f. satisfies A(x) = 1 + x/(1 - x*A(x))^s, then a(n) = Sum_{k=0..n} binomial(n-k+1,k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
PROG
(PARI) a(n, s=5) = sum(k=0, n, binomial(n-k+1, k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 22 2023
STATUS
approved