login
A365114
G.f. satisfies A(x) = 1 + x / (1 - x*A(x))^4.
6
1, 1, 4, 14, 56, 241, 1080, 4998, 23704, 114588, 562552, 2797138, 14057140, 71288385, 364360204, 1874960408, 9706035408, 50510552881, 264096980192, 1386676113360, 7308650513232, 38654087828310, 205076534841112, 1091144400876394, 5820924498941668
OFFSET
0,3
FORMULA
If g.f. satisfies A(x) = 1 + x/(1 - x*A(x))^s, then a(n) = Sum_{k=0..n} binomial(n-k+1,k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
PROG
(PARI) a(n, s=4) = sum(k=0, n, binomial(n-k+1, k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 22 2023
STATUS
approved