%I #15 Aug 22 2023 07:56:55
%S 0,2,1,1,1,2,1,2,10,2,2,66,1,1,13,66,9,5,8,1,9,1,1,1,5,2,2,3,1,1,1,16,
%T 99,6,1,5,1,2,1,55,2,2,1,1,6,4,1,1,1,40,1,1,1,6,14,7,9,1,1,2,3,2,2,2,
%U 1,1,2,7,12,1,2,2,1,4,2,4,2,1,3,2,1,10,7,1,4,1,119,1,1,1,3,5,2,12,1
%N Continued fraction expansion of 1/(2+3/(4+5/(6+7/(...)))) = A113014.
%C A113014 is defined by a generalized continued fraction and the expansion here is its simple continued fraction.
%e 1/(2+1/(1+1/(1+1/(1+1/(2+1/(...)))))) = 1/(2+3/(4+5/(6+7/(...)))).
%t A365105 = ContinuedFraction[Sqrt[2*E/Pi]/Erfi[1/Sqrt[2]]-1,#]&;
%Y Cf. A113014, A365116.
%K nonn,cofr
%O 0,2
%A _Rok Cestnik_, Aug 21 2023