login
A365035
E.g.f. satisfies A(x) = exp(x * (1 + x/A(x))).
2
1, 1, 3, 1, -11, 61, 301, -6299, 7561, 903673, -9019079, -145636919, 4305630781, 7516191541, -2037845181371, 22442805921901, 944219385367441, -29922880660473359, -288352494154313999, 32071808922904896913, -273044292430852251899
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( x + LambertW(x^2*exp(-x)) ).
a(n) = n! * Sum_{k=1..n} (-n+k+1)^(k-1) * binomial(k,n-k)/k! for n>0.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x+lambertw(x^2*exp(-x)))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 17 2023
STATUS
approved