login
A365010
E.g.f. satisfies A(x) = 1 + x*exp(-x)*A(x)^3.
2
1, 1, 4, 39, 596, 12365, 324714, 10329655, 386190328, 16597810233, 806356830230, 43700423019011, 2613919719004692, 171053575111641157, 12156558707970920866, 932424974682447304815, 76772968644326739801584, 6754080601542663692950769
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} (-k)^(n-k) * A001764(k)/(n-k)!.
MAPLE
A365010 := proc(n)
add( (-k)^(n-k)*A001764(k)/(n-k)!, k=0..n) ;
%*n! ;
end proc:
seq(A365010(n), n=0..80); # R. J. Mathar, Aug 16 2023
PROG
(PARI) a(n) = n!*sum(k=0, n, (-k)^(n-k)*binomial(3*k, k)/((2*k+1)*(n-k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 15 2023
STATUS
approved