login
A364978
E.g.f. satisfies A(x) = 1 + x*exp(x*A(x)^2).
3
1, 1, 2, 15, 124, 1565, 23886, 446887, 9787352, 246408633, 7010910010, 222438284651, 7788393551412, 298293192119221, 12406118302851014, 556817903190669135, 26825727269937929776, 1380790608848655193457, 75625529930102546486514
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(2*n-2*k+1,k)/( (2*n-2*k+1)*(n-k)! ).
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(2*n-2*k+1, k)/((2*n-2*k+1)*(n-k)!));
CROSSREFS
Sequence in context: A365157 A341726 A055866 * A051407 A371580 A242091
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 15 2023
STATUS
approved