login
A364926
Prime powers (A000961) q such that 2*q+1 is a prime.
1
1, 2, 3, 5, 8, 9, 11, 23, 29, 41, 53, 81, 83, 89, 113, 125, 128, 131, 173, 179, 191, 233, 239, 243, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 729, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1331, 1409, 1439, 1451, 1481, 1499
OFFSET
1,2
LINKS
FORMULA
a(n) = (A048184(n)-1)/2.
EXAMPLE
9 is a term since 9 = 3^2 and that 2*9+1 = 19 is prime.
PROG
(PARI) is(n) = (n==1) || (isprimepower(n) && isprime(2*n+1))
CROSSREFS
{2*a(n)+1} gives A048184.
Supersequence of A005384.
Cf. A000961.
Sequence in context: A284890 A051214 A256722 * A363097 A192391 A013634
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Aug 13 2023
STATUS
approved