login
A364811
Number of distinct residues x^4 (mod 2^n), x=0..2^n-1.
2
1, 2, 2, 2, 2, 4, 6, 10, 18, 36, 70, 138, 274, 548, 1094, 2186, 4370, 8740, 17478, 34954, 69906, 139812, 279622, 559242, 1118482, 2236964, 4473926
OFFSET
0,2
COMMENTS
For n>=4, A319281(a(n)) == 2^n + [(n mod 4)>0].
It appears that for n>4: a(n)=2*a(n-1)-2*[(n mod 4)==2]; a(n) = ceiling(2^n/15) - [(n mod 4)==0] + 1.
MATHEMATICA
a[n_]:=CountDistinct[Table[PowerMod[x-1, 4, 2^(n-1)], {x, 1, 2^(n-1)}]]; Array[a, 24]
PROG
(PARI) a(n) = #Set(vector(2^(n-1), x, Mod(x-1, 2^(n-1))^4))
(Python)
def A364811(n): return len({pow(x, 4, 1<<n) for x in range(1<<n)}) # Chai Wah Wu, Sep 17 2023
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Albert Mukovskiy, Sep 14 2023
STATUS
approved