OFFSET
0,2
COMMENTS
Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence.
The present sequence is an integral factorial ratio sequence of height 2.
It is the particular case a = 2, b = 3 of the 2-parameter family of factorial ratio sequences defined by u(n) = (2*n)!/n! * ((a+b+1)*n)! * (2*a*n)! * (2*b*n)! /( ((a+b)*n)! * ((a+1)*n)! * ((b+1)*n)! * (a*n)! * (b*n)! ). These sequences are shown to be integral by the identity u(n) = Sum_{i = -n..n} (-1)^i * binomial(2*n, n+i) * binomial(2*a*n, a*n+i) * binomial(2*b*n, b*n+i).
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..300
Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2012), arXiv:1111.3057 [math.NT], (2011).
Wikipedia, Dixon's identity
FORMULA
a(n) = Sum_{i = -n..n} (-1)^i * binomial(2*n, n+i) * binomial(4*n, 2*n+i) * binomial(6*n, 3*n+i), showing that the sequence is integral. Compare with Dixon's identity Sum_{i = -n..n} (-1)^i * binomial(2*n, n+i)^3 = (3*n)!/n!^3.
a(n) = (-1)^n * (6*n)!/((3*n)!*(2*n)!*n!) * hypergeom([-2*n, -3*n, -4*n], [n + 1, 2*n + 1], 1).
P-recursive: a(n) = (576/5)*(2*n-1)^2*(6*n-1)^2*(6*n-5)^2/((5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)*n^2) * a(n-1) with a(0) = 1.
a(n) ~ c^n * 1/(sqrt(5)*Pi*n), where c = (2^12)*(3^6)/(5^5).
a(n) = [x^n] G(x)^(24*n), where the power series G(x) = 1 + 5*x + 683*x^2 + 205020*x^3 + 81906321*x^4 + 38109640996*x^5 + 19499018805299*x^6 + 10646310099966919*x^7 + 6093917580539621690*x^8 + ... appears to have integer coefficients.
exp( Sum_{n > = 1} a(n)*x^n/n ) = F(x)^24, where the power series F(x) = 1 + 5*x + 1283*x^2 + 557400*x^3 + 302894393*x^4 + 186417421346*x^5 + 124214055930695*x^6 + 87454455447781703*x^7 + 64116544959085589954*x^8 + ... appears to have integer coefficients.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3^r)) hold for all primes p >= 5 and all positive integers n and r [added Oct 11 2024: follows from Meštrović, Section 6, equation 39, since a(n) = binomial(6*n, 3*n)*binomial(6*n, n)].
MAPLE
seq( (6*n)!^2/((5*n)! * (3*n)!^2 * n!), n = 0..15);
MATHEMATICA
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 29 2023
STATUS
approved