login
A364477
G.f. satisfies A(x) = 1 + x*A(x)^2 + x^2*A(x)^7.
2
1, 1, 3, 14, 76, 448, 2791, 18078, 120516, 821435, 5698422, 40101623, 285583775, 2054272430, 14903954415, 108932920861, 801350333186, 5928653489398, 44084056075057, 329279673851792, 2469493161891742, 18588339309502760, 140383789476473354
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+3*k,k) * binomial(2*n+2*k,n-2*k) / (n+4*k+1).
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(2*n+3*k, k)*binomial(2*n+2*k, n-2*k)/(n+4*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 26 2023
STATUS
approved