login
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^2*A(x)^3.
12

%I #13 Nov 23 2024 11:10:51

%S 1,1,4,18,94,529,3135,19270,121732,785496,5155167,34304706,230923653,

%T 1569684910,10759159000,74281473504,516089542684,3605685460750,

%U 25316226436086,178538289189108,1264131169628799,8982889404251721,64041351551534215

%N G.f. satisfies A(x) = 1 + x*A(x)^3 + x^2*A(x)^3.

%F a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-3*k,k) * binomial(3*n-4*k,n-2*k) / (2*n-2*k+1).

%F D-finite with recurrence 2*n*(2*n+1)*a(n) -(5*n+1)*(3*n-2)*a(n-1) +4*(-25*n^2+75*n-59) *a(n-2) +9*(-15*n^2+69*n-80)*a(n-3) -6*(3*n-8)*(3*n-10) *a(n-4)=0. - _R. J. Mathar_, Jul 27 2023

%p A364475 := proc(n)

%p add( binomial(3*n-3*k,k) * binomial(3*n-4*k,n-2*k)/(2*n-2*k+1),k=0..n/2) ;

%p end proc:

%p seq(A364475(n),n=0..80); # _R. J. Mathar_, Jul 27 2023

%o (PARI) a(n) = sum(k=0, n\2, binomial(3*n-3*k, k)*binomial(3*n-4*k, n-2*k)/(2*n-2*k+1));

%Y Column k=1 of A378323.

%Y Cf. A002293, A104979, A186997, A255673, A361245, A364474, A364478.

%K nonn,changed

%O 0,3

%A _Seiichi Manyama_, Jul 26 2023