login
A364472
G.f. satisfies A(x) = 1 + x*A(x) + x^2*A(x)^6.
7
1, 1, 2, 8, 35, 163, 808, 4162, 22041, 119325, 657384, 3673394, 20769983, 118610807, 683131766, 3963486380, 23144000681, 135911263309, 802143851323, 4755506884495, 28306896506651, 169110331570307, 1013643450123455, 6094125091837335, 36739933169338731
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n+4*k,k) * binomial(n+3*k,n-2*k) / (5*k+1) = Sum_{k=0..floor(n/2)} binomial(n+4*k,6*k) * binomial(6*k,k) / (5*k+1).
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(n+4*k, k)*binomial(n+3*k, n-2*k)/(5*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 26 2023
STATUS
approved