Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #25 Aug 23 2024 08:37:56
%S 5,5,159,569,1557,2439,25353,24317,164073
%N Smallest k such that 4^(4^n) - k is prime.
%C This is to 4 as A058220 is to 2 and A140331 is to 3.
%C a(8) > 22174.
%F a(n) = A064722(A137840(n)).
%F a(n) = A058220(2*n+1). - _Michael S. Branicky_, Aug 23 2024
%e a(2) = 5 because 4^(4^2) - 5 = 4294967291 is prime.
%t lst={};Do[Do[p=4^(4^n)-k;If[PrimeQ[p],AppendTo[lst,k];Break[]],{k,2,11!}],{n,7}];lst
%t Table[k=1;Monitor[Parallelize[While[True,If[PrimeQ[4^(4^n)-k],Break[]];k++];k],k],{n,1,7}]
%t y[n_] := Module[{x = 4^(4^n)}, x - NextPrime[x, -1]]; Array[y, 7]
%o (PARI) a(n) = my(x = 4^(4^n)); x - precprime(x);
%Y Cf. A064722, A137840.
%Y Cf. A058220, A140331, A364453, A364454.
%K more,nonn
%O 1,1
%A _J.W.L. (Jan) Eerland_, Jul 25 2023
%E a(8) using search and a(9) using A058220 from _Michael S. Branicky_, Aug 23 2024