OFFSET
0,2
COMMENTS
Row 2 of A364298.
Compare with the Apéry numbers A005259, which are related to the Legendre polynomials by A005259(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^2.
A005259 satisfies the supercongruences
1) u (n*p^r) == u(n*p^(r-1)) (mod p^(3*r))
and the shifted supercongruences
2) u (n*p^r - 1) == u(n*p^(r-1) - 1) (mod p^(3*r))
for all primes p >= 5 and positive integers n and r.
We conjecture that the present sequence also satisfies the supercongruences 1) and 2).
FORMULA
Conjectures:
1) 17*a(p) - 11*a(p-1) == 40 (mod p^5) for all primes p >= 7 (checked up to p = 101).
2) for r >= 2, 17*a(p^r) - 11*a(p^r - 1) == 17*a(p^(r-1)) - 11*a(p^(r-1) - 1) (mod p^(3*r+3)) for all primes p >= 5.
3) a(p)^(3*17) == a(1)^(3*17) * a(p-1)^11 (mod p^5) for all primes p except p = 5 (checked up to p = 101).
4) for r >= 2, a(p^r)^(3*17) * a(p^(r-1) - 1)^11 == a(p^(r-1))^(3*17) * a(p^r - 1)^11 (mod p^(3*r+3)) for all primes p >= 5.
MAPLE
a(n) := coeff(series( 1/(1 + x) * LegendreP(n, (1 - x)/(1 + x))^(-2), x, 21), x, n):
seq(a(n), n = 0..20);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 18 2023
STATUS
approved