login
A364196
Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^5 * (1 + A(x)^3).
2
1, 2, 26, 490, 10850, 263010, 6756570, 180732778, 4980586114, 140426468098, 4031581757786, 117456808452906, 3463846465750114, 103200018840208098, 3101624265076611482, 93922235608046966058, 2862850624269320061954, 87768126789137804695298, 2704569471624358219362714
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(5*n+3*k+1,n)/(5*n+3*k+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)*binomial(5*n+3*k+1, n)/(5*n+3*k+1));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jul 13 2023
STATUS
approved