login
A364195
Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^5 * (1 + A(x)^2).
2
1, 2, 24, 412, 8280, 181904, 4232048, 102479184, 2555884896, 65207430848, 1693785940992, 44643489969792, 1190986788639232, 32097745138518528, 872595854798515456, 23900545715576753408, 658934625866433496576, 18271554709525993556992, 509241947434834351042560
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(5*n+2*k+1,n)/(5*n+2*k+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)*binomial(5*n+2*k+1, n)/(5*n+2*k+1));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jul 13 2023
STATUS
approved