login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = sqrt((x^2 - y^2)*x*y/c) where x is A364108(n), y is A364109(n) and c is A006991(n).
3

%I #9 Jul 05 2023 15:04:00

%S 6,1,60,9690,6,2,2,105,72306780,90090,1,103320,6,4737551070,118575,10,

%T 60,462,12111037689240,297855654284978790,1170,9147755349330,

%U 121068780,6,1976,3,281820,63600,15,495683115837000,462,4641,3353350,49210,3974124,49062,59085715926389725950,35

%N a(n) = sqrt((x^2 - y^2)*x*y/c) where x is A364108(n), y is A364109(n) and c is A006991(n).

%H Michel Marcus, <a href="/A364110/b364110.txt">Table of n, a(n) for n = 1..361</a>

%H Mauro Fiorentini, <a href="http://bitman.name/math/table/29">Numeri congruenti minori di 1000</a>. See column r.

%Y Cf. A006991 (primitive congruent numbers), A364108 (x), A364109 (y).

%K nonn

%O 1,1

%A _Michel Marcus_, Jul 05 2023