login
A364035
Expansion of Sum_{k>0} k * x^k / (1 - 2*x^(2*k)).
1
1, 2, 5, 4, 9, 10, 15, 8, 31, 18, 43, 20, 77, 30, 165, 16, 273, 62, 531, 36, 1083, 86, 2071, 40, 4141, 154, 8285, 60, 16413, 330, 32799, 32, 65687, 546, 131175, 124, 262181, 1062, 524545, 72, 1048617, 2166, 2097195, 172, 4194879, 4142, 8388655, 80, 16777321, 8282, 33555285, 308
OFFSET
1,2
FORMULA
G.f.: Sum_{k>0} 2^(k-1) * x^(2*k-1) / (1 - x^(2*k-1))^2.
a(n) = Sum_{d|n, d odd} 2^((d-1)/2) * (n/d).
MATHEMATICA
a[n_] := DivisorSum[n, 2^((#-1)/2) * (n/#) &, OddQ[#] &]; Array[a, 50] (* Amiram Eldar, Jul 02 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (d%2==1)*2^((d-1)/2)*n/d);
CROSSREFS
Sequence in context: A339597 A368736 A120119 * A298011 A048678 A271586
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 02 2023
STATUS
approved