login
A363817
G.f. satisfies A(x) = (1 + x/A(x))/(1 - x)^3.
1
1, 4, 5, 15, -5, 111, -402, 2172, -10892, 57362, -305756, 1656560, -9083341, 50328219, -281324174, 1584578882, -8984740332, 51242962422, -293772467974, 1691974930794, -9785378133066, 56805049768410, -330880419984556, 1933299689139664, -11328101469158229
OFFSET
0,2
FORMULA
G.f.: A(x) = -2*x / (1-sqrt(1+4*x*(1-x)^3)).
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(2*k-1,k) * binomial(3*(k-1),n-k)/(2*k-1).
PROG
(PARI) a(n) = (-1)^(n-1)*sum(k=0, n, binomial(2*k-1, k)*binomial(3*(k-1), n-k)/(2*k-1));
CROSSREFS
Sequence in context: A222489 A222501 A225204 * A308095 A321348 A257311
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 18 2023
STATUS
approved