login
Decimal expansion of 2^(e-2)*e^Sum_{k=2..oo} log(k)/k!.
1

%I #20 Jun 25 2023 04:24:42

%S 3,0,0,9,1,5,0,7,2,2,7,4,1,4,8,7,9,9,3,5,6,3,0,7,4,7,3,7,4,8,5,3,1,6,

%T 8,0,0,5,1,0,7,2,9,1,6,2,2,5,5,3,8,4,3,5,8,0,6,7,6,6,7,3,3,6,5,0,3,3,

%U 3,8,1,3,5,1,7,4,9,5,0,8,4,8,9,9,4,6,6,0,4,7,7,4,3,0,5,7,8,3,7,7

%N Decimal expansion of 2^(e-2)*e^Sum_{k=2..oo} log(k)/k!.

%H Robert A. Beeler, <a href="https://www.researchgate.net/publication/265324328_A_note_on_the_number_of_ways_to_compute_a_determinant_using_cofactor_expansion">A Note on the number of ways to compute a determinant using cofactor expansion</a>, Bull. Inst. Combin. Appl., 63 (2011), 36-38. [ResearchGate link]

%F Equals 2^(e-2)*e^A306243.

%F Equals 2^(exp(1)-2)*A296301. - _Vaclav Kotesovec_, Jun 22 2023

%e 3.009150722741487993563074737485316800510...

%t 2^(E-2)E^NSum[Log[n]/n!, {n, 2, Infinity}, WorkingPrecision -> 110, NSumTerms -> 100] // RealDigits[#, 10, 100] &//First

%Y Cf. A181044, A296301, A306243.

%K nonn,cons

%O 1,1

%A _Stefano Spezia_, Jun 21 2023