login
A363767
Decimal expansion of 2^(e-2)*e^Sum_{k=2..oo} log(k)/k!.
1
3, 0, 0, 9, 1, 5, 0, 7, 2, 2, 7, 4, 1, 4, 8, 7, 9, 9, 3, 5, 6, 3, 0, 7, 4, 7, 3, 7, 4, 8, 5, 3, 1, 6, 8, 0, 0, 5, 1, 0, 7, 2, 9, 1, 6, 2, 2, 5, 5, 3, 8, 4, 3, 5, 8, 0, 6, 7, 6, 6, 7, 3, 3, 6, 5, 0, 3, 3, 3, 8, 1, 3, 5, 1, 7, 4, 9, 5, 0, 8, 4, 8, 9, 9, 4, 6, 6, 0, 4, 7, 7, 4, 3, 0, 5, 7, 8, 3, 7, 7
OFFSET
1,1
LINKS
Robert A. Beeler, A Note on the number of ways to compute a determinant using cofactor expansion, Bull. Inst. Combin. Appl., 63 (2011), 36-38. [ResearchGate link]
FORMULA
Equals 2^(e-2)*e^A306243.
Equals 2^(exp(1)-2)*A296301. - Vaclav Kotesovec, Jun 22 2023
EXAMPLE
3.009150722741487993563074737485316800510...
MATHEMATICA
2^(E-2)E^NSum[Log[n]/n!, {n, 2, Infinity}, WorkingPrecision -> 110, NSumTerms -> 100] // RealDigits[#, 10, 100] &//First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Stefano Spezia, Jun 21 2023
STATUS
approved