login
A363748
Number of compositions into sums of fourth powers.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 22, 26, 31, 37, 44, 52, 61, 71, 82, 94, 107, 121, 136, 152, 169, 188, 210, 236, 267, 304, 348, 400, 461, 532, 614, 708, 815, 936, 1072, 1224, 1393, 1581, 1791, 2027, 2294, 2598, 2946, 3346, 3807, 4339, 4953, 5661, 6476, 7412, 8484, 9708, 11101, 12682, 14474
OFFSET
0,17
COMMENTS
This sequence is different from A291149.
LINKS
FORMULA
G.f.: 1/(1 - Sum_{k>=1} x^(k^4)).
EXAMPLE
a(18)=4 counts the compositions 1^4+1^4+1^4+2^4 = 1^4+1^4+2^4+1^4 = 1^4+2^4+1^4+1^4 = 2^4+1^4+1^4+1^4. - R. J. Mathar, Jun 21 2023
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, ispower(j, 4)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 19 2023
STATUS
approved