login
A363739
a(n) is the length of the n-th run of identical terms of A349509.
2
2, 1, 5, 1, 17, 1, 2, 1, 5, 1, 17, 1, 26, 1, 2, 1, 23, 1, 8, 1, 44, 1, 80, 1, 2, 1, 5, 1, 17, 1, 53, 1, 26, 1, 134, 1, 80, 1, 29, 1, 23, 1, 107, 1, 2, 1, 5, 1, 71, 1, 161, 1, 2, 1, 77, 1, 35, 1, 65, 1, 59, 1, 164, 1, 26, 1, 50, 1, 8, 1, 233, 1, 194, 1, 290, 1, 2
OFFSET
1,1
FORMULA
Conjectures: (Start)
a(2*n) = 1.
a(2*n+1) = A349929(n) - A349929(n-1) - 1, with A349929(0) = 0. (End)
MATHEMATICA
A349509[n_]:=Denominator[Binomial[n^3+6n^2-6n+2, n^3-1]/n^3]; a={}; imax=2200; For[i=1, i<=imax, i++, For[j=1, A349509[j+i-1]==A349509[j+i], j++]; If[i>1 && A349509[j+i-1]!=A349509[j+i], AppendTo[a, 1]]; i+=j; AppendTo[a, j]]; a
CROSSREFS
Sequence in context: A327249 A173108 A173111 * A257459 A372494 A140879
KEYWORD
nonn
AUTHOR
Stefano Spezia, Jun 19 2023
STATUS
approved