login
A363716
Decimal expansion of Sum_{k>=2} (1/k!) * k-th derivative of zeta(k).
2
9, 3, 6, 1, 9, 1, 3, 1, 9, 4, 0, 4, 4, 8, 7, 0, 5, 1, 6, 4, 1, 1, 9, 2, 0, 3, 4, 8, 0, 3, 1, 3, 4, 4, 8, 8, 2, 4, 7, 6, 7, 0, 6, 2, 7, 4, 0, 7, 2, 8, 3, 2, 7, 8, 8, 4, 3, 6, 1, 1, 9, 4, 5, 9, 9, 5, 8, 4, 7, 1, 7, 8, 9, 1, 6, 3, 7, 0, 0, 5, 6, 4, 9, 3, 3, 6, 3, 3, 8, 3, 9, 6, 2, 3, 6, 1, 1, 4, 5, 7, 2, 4, 8, 0, 2, 4
OFFSET
0,1
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 0..1000 (a(0)-a(105) from Vaclav Kotesovec)
FORMULA
Equals lim_{n->oo} (Sum_{m=1..n} 1/m^(1/m)) - n + log(n)^2/2 + sg1, where sg1 is the first Stieltjes constant (see A082633).
EXAMPLE
0.9361913194044870516411920348031344882476706274072832788436119459958471789...
MATHEMATICA
digits = 120; d = 1; j = 2; s = 0; While[Abs[d] > 10^(-digits - 5), d = 1 / j! * Derivative[j][Zeta][j]; s += d; j++]; RealDigits[s, 10, 120][[1]]
CROSSREFS
Sequence in context: A230158 A307960 A224235 * A169849 A182547 A019737
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Jun 17 2023
STATUS
approved