login
A363695
Expansion of Sum_{k>0} (1/(1-x^k)^5 - 1).
2
5, 20, 40, 90, 131, 265, 335, 585, 755, 1147, 1370, 2155, 2385, 3410, 4042, 5430, 5990, 8295, 8860, 11843, 13020, 16335, 17555, 23125, 23882, 29805, 32220, 39440, 40925, 51644, 52365, 64335, 67450, 79820, 82712, 101575, 101275, 120805, 125830, 148089, 149000, 179490
OFFSET
1,1
LINKS
FORMULA
G.f.: Sum_{k>0} binomial(k+4,4) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+4,4).
MATHEMATICA
a[n_] := DivisorSum[n, Binomial[# + 4, 4] &]; Array[a, 40] (* Amiram Eldar, Jul 05 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, binomial(d+4, 4));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jun 16 2023
STATUS
approved