login
A363593
Numbers k such that both A359804(k) and A359804(k+1) are odd.
2
3, 8, 22, 29, 36, 42, 45, 53, 57, 64, 82, 85, 88, 94, 110, 119, 124, 132, 135, 141, 144, 152, 159, 165, 170, 177, 183, 190, 195, 201, 214, 220, 224, 231, 239, 246, 252, 264, 270, 281, 287, 292, 299, 302, 306, 309, 323, 328, 334, 341, 347, 350, 356, 361, 372, 378, 381, 386, 397, 402, 411, 418, 424, 431
OFFSET
1,1
COMMENTS
Odd numbers may occur no more than twice in a row in A359804 as consequence of definition of that sequence.
Let b(n) = A359804(n). Let D(n) = b(a(n)..a(n)+1).
Since the product of 2 odd numbers b(n-2) and b(n-1) is odd, and since b(n) = mp, where p = A053669(b(n-2)*b(n-1)) = 2, D(n) implies b(a(n)+2) = 2m.
b(a(n)+2) = 2k and b(a(n+j)+2) = 2m, j >= 1 imply m > k as consequence of definition of A359804.
Perfect powers 2^k = b(j) occur such that j = a(n)+2 for some n. Therefore, A361505 is a subset of { a(n) + 2 }. Generally, perfect powers p^e in A246547 follow b(n-2) and b(n-1) such that b(n-2)*b(n-1) mod p != 0.
Conjecture: for prime q > 11, even squarefree semiprimes 2q follow D(n) for some n. Consider that primes in A359804 appear late for q > 11, yet pairs of successive odd numbers in that sequence occur rather often.
Conjectured to be an infinite sequence, meaning that consecutive odd terms appear infinitely many times in A359804. - David James Sycamore, Jun 21 2023
LINKS
Michael De Vlieger, Plot A359804(n) mod 2 at (x,y) = (n mod 256, -floor(n/256)), 8X magnification, where white represents even terms, and odd terms are shown in color. Singleton odd numbers are shown in dark blue, while red indicates two odd terms in a row. Shows A359804(n) mod 2 for n = 1..2^16.
Michael De Vlieger, Plot A359804(n) mod 2 at (x,y) = (n mod 2^10, -floor(n/2^10)), where white represents even terms, and odd terms are shown in color. Singleton odd numbers are shown in dark blue, while red indicates two odd terms in a row. Shows A359804(n) mod 2 for n = 1..2^20.
FORMULA
A361503(a(n)+1) = 2, consequence of definition of A359804.
EXAMPLE
Table of a(n) showing i = b(n) = p(i)*m(i), j = b(n+1) = p(j)*m(j), and k = b(n+2), where p(n) = A361503(n) and m(n) = A359804(n)/A361503(n):
n a(n) i j k p(i) p(j) m(i) m(j)
----------------------------------------------
1 3 3 5 4 3 5 1 1
2 8 7 9 8 7 3 1 3
3 22 33 35 16 11 7 3 5
4 29 45 49 26 5 7 9 7
5 36 55 63 32 5 7 11 9
6 42 13 65 34 13 5 1 13
7 45 39 75 38 3 5 13 15
8 53 85 51 46 5 3 17 17
9 57 91 99 52 7 11 13 9
10 64 57 105 58 3 7 19 15
11 82 143 81 62 11 3 13 27
12 85 135 147 64 5 7 27 21
...
MATHEMATICA
nn = 432; c[_] = False; q[_] = 1;
Set[{i, j}, {1, 2}]; c[1] = c[2] = True; q[2] = 2; u = 3;
Reap[Do[
(k = q[#]; While[c[k #], k++]; k *= #;
While[c[# q[#]], q[#]++]) &[(p = 2;
While[Divisible[i j, p], p = NextPrime[p]]; p)];
If[OddQ[j k], Sow[n - 1]];
Set[{c[k], i, j}, {True, j, k}];
If[k == u, While[c[u], u++]], {n, 3, nn}] ][[-1, -1]]
KEYWORD
nonn
AUTHOR
STATUS
approved