OFFSET
0,4
COMMENTS
Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds as a formal power series for all y.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..4100
FORMULA
The g.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following formulas; here, i = (+/-) sqrt(-1).
(1) A(x) = Sum_{n=-oo..+oo} x^n * (i + x^n)^(2*n).
(2) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 + i*x^n)^(2*n).
(3) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) * (1 + i*x^n)^(2*n) / (1 + x^(2*n))^(2*n).
(4) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^n * (i + x^n)^n.
(5) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 + i*x^n)^n.
(6) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) * (1 + i*x^n)^n / (1 + x^(2*n))^n.
From Paul D. Hanna, Aug 06 2023: (Start)
The following generating functions are extensions of Peter Bala's formulas given in A260147.
(7) A(x^2) = Sum_{n=-oo..+oo} x^(2*n+1) * (i + x^(2*n+1))^(2*n+1).
(8) A(x^2) = Sum_{n=-oo..+oo} x^(2*n*(2*n+1)) / (1 + i*x^(2*n+1))^(2*n+1).
(End)
a(2^n) = 1 for n > 0 (conjecture).
a(p) = p*(-1)^((p-1)/2) - 1 for primes p > 3 (conjecture).
EXAMPLE
G.f.: A(x) = 1 + x^2 - 3*x^3 + x^4 + 4*x^5 - 4*x^6 - 8*x^7 + x^8 + 23*x^9 - 8*x^10 - 12*x^11 - 27*x^12 + 12*x^13 + 36*x^14 + 15*x^15 + ...
PROG
(PARI) {a(n) = my(A); A = sum(m=-n-1, n+1, x^m * (I + x^m +x*O(x^n))^(2*m) ); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 31 2023
STATUS
approved