login
A363551
Möbius function of rank 3: a(n) = lambda(n) = A008836(n) if n is cubefree and 0 otherwise.
4
1, -1, -1, 1, -1, 1, -1, 0, 1, 1, -1, -1, -1, 1, 1, 0, -1, -1, -1, -1, 1, 1, -1, 0, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, -1, 1, 1, 0, -1, -1, -1, -1, -1, 1, -1, 0, 1, -1, 1, -1, -1, 0, 1, 0, 1, 1, -1, 1, -1, 1, -1, 0, 1, -1, -1, -1, 1, -1, -1, 0, -1, 1, -1
OFFSET
1
COMMENTS
First differs from A307420 at n = 63.
The Möbius function of rank 2 is the Möbius function (A008683).
Dirichlet inverse of A299406.
LINKS
Masato Kobayashi, Möbius functions of higher rank and Dirichlet series, arXiv:2108.01822 [math.NT], 2021.
FORMULA
a(n) = A008836(n) * A212793(n).
abs(a(n)) = A212793(n).
Multiplicative with a(p^e) = (-1)^e if e <= 2, and 0 otherwise.
Dirichlet g.f.: Product_{p prime} (1 - 1/p^s + 1/p^(2*s)) = zeta(2*s)*zeta(3*s)/(zeta(s)*zeta(6*s)).
MATHEMATICA
f[p_, e_] := If[e < 3, (-1)^e, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) f(e) = if(e < 3, (-1)^e, 0);
a(n) = vecprod(apply(f, factor(n)[, 2]));
CROSSREFS
Other generalizations of the Möbius function: A053864, A053865, A053981, A189021, A189022, A189023.
Sequence in context: A119981 A115789 A359471 * A053864 A189021 A212793
KEYWORD
sign,mult,easy
AUTHOR
Amiram Eldar, Jun 10 2023
STATUS
approved