login
A363548
G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - x^k)^3) ).
3
1, 1, 5, 19, 79, 326, 1414, 6198, 27794, 126233, 580885, 2700135, 12665756, 59869222, 284919675, 1364009722, 6564545500, 31742029545, 154134718727, 751316355122, 3674923035139, 18031965040197, 88734141475113, 437813286219942, 2165445447313147
OFFSET
0,3
LINKS
FORMULA
A(x) = (1 - x)^3 * B(x) where B(x) is the g.f. of A363507.
a(n) = Sum_{k=0..3} (-1)^k * binomial(3,k) * A363507(n-k).
PROG
(PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-x^k)^3))+x*O(x^n))); Vec(A);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 09 2023
STATUS
approved