login
G.f. satisfies A(x) = exp( Sum_{k>=1} A(2*x^k)^2 * x^k/k ).
1

%I #8 Jun 04 2023 12:07:10

%S 1,1,5,49,923,32603,2198413,288677317,74816592016,38536646525164,

%T 39578607089767640,81176446754286348780,332742981886258629407221,

%U 2726830211640382050679262877,44684572695377447660556579448947

%N G.f. satisfies A(x) = exp( Sum_{k>=1} A(2*x^k)^2 * x^k/k ).

%F G.f.: sqrt(B(x)) where B(x) is the g.f. of A363481.

%o (PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, 2*x^k)^2*x^k/k)+x*O(x^n))); Vec(A);

%Y Cf. A005750, A179470, A363481.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Jun 04 2023