login
A363398
Triangle read by rows. T(n, k) = [x^k] P(n, x), where P(n, x) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} (x^j * binomial(k, j) * (2*j + 1)^n), (secant case).
3
1, 3, 3, 7, 36, 25, 15, 297, 625, 343, 31, 2106, 10000, 14406, 6561, 63, 13851, 131250, 369754, 413343, 161051, 127, 87480, 1546875, 7529536, 15411789, 14172488, 4826809, 255, 540189, 17109375, 134237509, 444816117, 721025327, 564736653, 170859375
OFFSET
0,2
COMMENTS
Here we give an inclusion-exclusion representation of 2^n*Euler(n) (see A122045 and A002436), in A363399 we give such a representation for 2^n*Euler(n, 1) = A155585(n), and in A363400 one for the combined sequences.
FORMULA
Sum_{k=0..n} (-1)^k*T(n, k) = 2^n*Euler(n) = 4^n*Euler(n, 1/2).
(Sum_{k=0..n} (-1)^k*T(n, k)) / 2^n = Euler(n) = 2^n*Euler(n, 1/2) = A122045(n).
Sum_{k=0..2n}((-1)^k*T(2*n, k) = 4^n*Euler(2*n) = 16^n*Euler(2*n, 1/2) = (-1)^n*A002436(n).
From Detlef Meya, Oct 04 2023: (Start)
T(n, k) = (2*k + 1)^n * binomial(n+1, k+1) * hypergeom([1, k-n], [k+2], -1).
T(n, k) = (2*k + 1)^n * (2^(n + 1) - Sum_{j=0..k} binomial(n+1, j). (End)
EXAMPLE
The triangle T(n, k) starts:
[0] 1;
[1] 3, 3;
[2] 7, 36, 25;
[3] 15, 297, 625, 343;
[4] 31, 2106, 10000, 14406, 6561;
[5] 63, 13851, 131250, 369754, 413343, 161051;
[6] 127, 87480, 1546875, 7529536, 15411789, 14172488, 4826809;
[7] 255, 540189, 17109375, 134237509, 444816117, 721025327, 564736653, 170859375;
MAPLE
P := (n, x) -> add(add(x^j*binomial(k, j)*(2*j + 1)^n, j=0..k)*2^(n-k), k=0..n):
T := (n, k) -> coeff(P(n, x), x, k): seq(seq(T(n, k), k = 0..n), n = 0..7);
MATHEMATICA
(* From Detlef Meya, Oct 04 2023: (Start) *)
T[n_, k_] := (2*k+1)^n*(2^(n+1) - Sum[Binomial[n+1, j], {j, 0, k}]);
(* Or: *)
T[n_, k_] := (2*k+1)^n*Binomial[n+1, k+1]*Hypergeometric2F1[1, k-n, k+2, -1];
Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* End *)
CROSSREFS
Cf. A122045 (alternating row sums), A363396 (row sums), A126646 (column 0), A085527 (main diagonal), A141475 (central terms).
Cf. A363399 (tangent case), A363400 (combined case).
Sequence in context: A173321 A191498 A065747 * A232309 A273043 A066142
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 31 2023
STATUS
approved