OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
Multiplicative with a(p^e) = (Product_{k>=0} ((p^(2^k*(b(k)+1)) - 1)/(p^(2^k) - 1)) - 1, where e = Sum_{k >= 0} b(k) * 2^k is the binary representation of e.
a(n) >= n, with equality if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((1 - 1/p) * Sum_{k>=1} a(p^k)/p^(2*k)) = 0.53906337497505398777... .
EXAMPLE
a(8) = 14 since 8 has 3 divisors that are both infinitary and coreful, 2, 4 and 8, and 2 + 4 + 8 = 14.
MATHEMATICA
f[p_, e_] := Times @@ (1 + Flatten[p^(2^(-1 + Position[Reverse@ IntegerDigits[e, 2], _?(# == 1 &)]))]) - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n), b); prod(i = 1, #f~, b = binary(f[i, 2]); prod(k = 1, #b, if(b[k], f[i, 1]^(2^(#b - k)) + 1, 1)) - 1); }
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Amiram Eldar, May 28 2023
STATUS
approved