login
A363230
Number of partitions of n with rank 3 or higher (the rank of a partition is the largest part minus the number of parts).
2
0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 14, 21, 28, 39, 51, 70, 90, 120, 154, 201, 256, 330, 415, 529, 662, 833, 1035, 1293, 1595, 1976, 2425, 2982, 3640, 4449, 5401, 6565, 7935, 9592, 11543, 13891, 16645, 19943, 23808, 28408, 33792, 40172, 47619, 56413, 66661, 78708, 92724, 109149, 128213, 150486, 176293
OFFSET
1,6
LINKS
FORMULA
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k+5)/2).
a(n) = p(n-4) - p(n-11) + p(n-21) - ... + (-1)^(k-1) * p(n-k*(3*k+5)/2) + ..., where p() is A000041().
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)) * (1 - (1/(2*Pi) + 31*Pi/144) / sqrt(n/6)). - Vaclav Kotesovec, May 26 2023
EXAMPLE
a(6) = 2 counts these partitions: 6, 5+1.
PROG
(PARI) a(n) = sum(k=1, sqrtint(n), (-1)^(k-1)*numbpart(n-k*(3*k+5)/2));
CROSSREFS
With rank r or higher: A064174 (r=0), A064173 (r=1), A123975 (r=2), this sequence (r=3), A363231 (r=4).
Sequence in context: A035995 A036006 A027341 * A262371 A359683 A184642
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 22 2023
STATUS
approved