OFFSET
0,2
FORMULA
Generating function A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(4*n-1).
(2) -1 = Sum_{n=-oo..+oo} x^(4*n^2) / (1 - 2*A(x)*x^n)^(4*n+1).
EXAMPLE
G.f.: A(x) = 1 + 4*x + 138*x^2 + 6571*x^3 + 353935*x^4 + 20694945*x^5 + 1276853497*x^6 + 81834405039*x^7 + 5395444806588*x^8 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff(-1 + sum(m=-#A, #A, x^m * (2*Ser(A) - x^m)^(4*m-1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff(1 - sum(m=-#A, #A, x^(4*m^2)/(1 - 2*Ser(A)*x^m)^(4*m+1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 14 2023
STATUS
approved