%I #16 May 17 2023 08:34:34
%S 1,0,0,0,0,0,1,1,2,3,5,7,11,14,20,26,35,44,59,73,94,117,148,181,228,
%T 277,344,418,514,621,762,917,1116,1342,1624,1945,2348,2803,3366,4012,
%U 4798,5700,6798,8052,9565,11305,13383,15771,18618,21880,25745,30187,35414,41414,48461,56531,65967
%N Number of partitions p of n such that (1/5)*max(p) is a part of p.
%H Seiichi Manyama, <a href="/A363068/b363068.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: Sum_{k>=0} x^(6*k)/Product_{j=1..5*k} (1-x^j).
%e a(8) = 2 counts these partitions: 521, 5111.
%o (PARI) a(n) = sum(k=0, n\6, #partitions(n-6*k, 5*k));
%Y Cf. A002865, A238479, A363066, A363067.
%Y Cf. A237827, A363047.
%K nonn
%O 0,9
%A _Seiichi Manyama_, May 16 2023