login
A362957
a(n) is the least prime p such that the number of distinct prime factors of p^n + 1 sets a new record.
4
2, 3, 5, 43, 17, 47, 151, 1697, 59, 2153, 521, 13183, 30089, 20753, 3769
OFFSET
1,1
COMMENTS
a(16) > 2.3*10^6; to see if there has been any progress see also A280005(16).
PROG
(PARI) smallf(q, nmax) = {my(qq=q, j=0); forprime (p=2, nmax, my(k=0); while (qq%p==0, k++; qq/=p); if (k>0, j++; )); [j, qq]};
a362957(upto) = {my(nfmax=0); for (n=1, upto, forprime (p=2, oo, my(f=p^n+1, s=smallf(f, p)); if (s[1]<n\3, next); my(nf=omega(s[2])+s[1]); if (nf>nfmax, print1(p, ", "); nfmax=nf; break)))};
a362957(12)
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Hugo Pfoertner, Jun 11 2023
STATUS
approved