login
A362849
Triangle read by rows, T(n, k) = A243664(n) * binomial(n, k).
3
1, 1, 1, 21, 42, 21, 1849, 5547, 5547, 1849, 426405, 1705620, 2558430, 1705620, 426405, 203374081, 1016870405, 2033740810, 2033740810, 1016870405, 203374081, 173959321557, 1043755929342, 2609389823355, 3479186431140, 2609389823355, 1043755929342, 173959321557
OFFSET
0,4
EXAMPLE
[0] 1;
[1] 1, 1;
[2] 21, 42, 21;
[3] 1849, 5547, 5547, 1849;
[4] 426405, 1705620, 2558430, 1705620, 426405;
[5] 203374081, 1016870405, 2033740810, 2033740810, 1016870405, 203374081;
PROG
(SageMath) # uses[TransOrdPart from A362585]
def A362849(n) -> list[int]: return TransOrdPart(3, n)
for n in range(6): print(A362849(n))
CROSSREFS
Family of triangles: A055372 (m=0, Pascal), A362585 (m=1, Fubini), A362586 (m=2, Joffe), this sequence (m=3, A278073).
Cf. A243664 (column 0 and main diagonal).
Sequence in context: A053428 A123842 A247387 * A120772 A260749 A040420
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 05 2023
STATUS
approved