login
A362796
E.g.f. satisfies A(x) = 1/(1-x)^(A(x)^x).
3
1, 1, 2, 12, 72, 650, 6480, 80906, 1121512, 18069264, 320204160, 6348340152, 136915211664, 3230148306216, 82078412377416, 2248247450065080, 65771634671679360, 2052879248516927232, 67955959831214467584, 2381716543764159438336
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(x * log(1-x)) / x ) = 1/(1-x)^exp( -LambertW(x * log(1-x)) ).
E.g.f.: Sum_{k>=0} (k*x + 1)^(k-1) * (-log(1-x))^k / k!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^exp(-lambertw(x*log(1-x)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 04 2023
STATUS
approved