login
A362772
E.g.f. satisfies A(x) = exp( x * (1+x)^2 * A(x) ).
4
1, 1, 7, 58, 725, 11816, 239047, 5794972, 163861609, 5299694704, 193052158091, 7823764856084, 349236133422013, 17028109232138824, 900544754206010383, 51348494205747851116, 3140366001277974883793, 205067625446428300157408
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-x * (1+x)^2) ).
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(2*k,n-k)/k!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x*(1+x)^2))))
CROSSREFS
Sequence in context: A323254 A123766 A377331 * A005332 A132546 A210404
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 02 2023
STATUS
approved